

Description

Fortron 6165A4 offers a unique balance of properties based on a high mineral and glass reinforced composition. The heat resistance under load bearing conditions is excellent for this product. As with all Fortron grades this product is inherently flame-retardant. Applications include electronic components (i.e. lamp houses, connection parts and sockets) and components in industry (i.e. pumps and pistons).

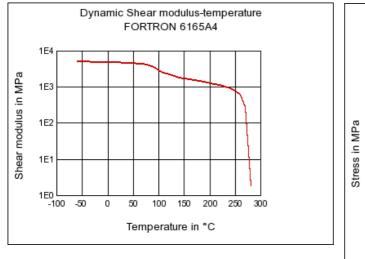
Physical properties	Value	Unit	Test Standard		
Density	1950	kg/m³	ISO 1183		
Mold shrinkage - parallel	0.2 - 0.6	%	ISO 294-4		
Mold shrinkage - normal	0.3 - 0.7	%	ISO 294-4		
Water absorption (23°C-sat)	0.02	%	ISO 62		

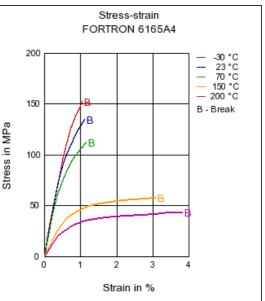
Mechanical properties	Value	Unit	Test Standard
Tensile modulus (1mm/min)	19000	MPa	ISO 527-2/1A
Tensile stress at break (5mm/min)	130	MPa	ISO 527-2/1A
Tensile strain at break (5mm/min)	1.2	%	ISO 527-2/1A
Flexural modulus (23°C)	18800	MPa	ISO 178
Flexural stress @ break	210	MPa	ISO 178
Charpy impact strength @ 23°C	20	kJ/m²	ISO 179/1eU
Charpy impact strength @ -30°C	20	kJ/m²	ISO 179/1eU
Charpy notched impact strength @ 23°C	7	kJ/m²	ISO 179/1eA
Charpy notched impact strength @ -30°C	7	kJ/m²	ISO 179/1eA
Unnotched impact str (Izod) @ 23°C	20	kJ/m²	ISO 180/1U
Notched impact strength (Izod) @ 23°C	6	kJ/m²	ISO 180/1A
Notched impact strength (Izod) @-30°C	6	kJ/m²	ISO 180/1A
Rockwell hardness	100	M-Scale	ISO 2039-2

Thermal properties	Value	Unit	Test Standard
Melting temperature (10°C/min)	280	°C	ISO 11357-1,-2,-3
Glass transition temperature (10°C/min)	90	°C	ISO 11357-1,-2,-3
DTUL @ 1.8 MPa	270	°C	ISO 75-1/-2
DTUL @ 8.0 MPa	215	°C	ISO 75-1/-2
Coeff.of linear therm. expansion (parallel)	0.19	E-4/°C	ISO 11359-2
Coeff.of linear therm. expansion (normal)	0.24	E-4/°C	ISO 11359-2
Limiting oxygen index (LOI)	53	%	ISO 4589
Flammability @1.6mm nom. thickn.	V-0	class	UL94
thickness tested (1.6)	1.5	mm	UL94
Flammability at thickness h	V-0	class	UL94
thickness tested (h)	0.75	mm	UL94
Flammability 5V at thickness h	5VA	class	UL94
thickness tested (5V)	3	mm	UL94

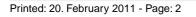
Electrical properties	Value	Unit	Test Standard
Relative permittivity - 10kHz	5.4	-	IEC 60250
Relative permittivity - 1 MHz	5.6	-	IEC 60250
Dissipation factor - 10kHz	10	E-4	IEC 60250
Dissipation factor - 1 MHz	20	E-4	IEC 60250
Volume resistivity	>1E15	Ohm*m	IEC 60093
Surface resistivity	>1E15	Ohm	IEC 60093

Printed: 20. February 2011 - Page: 1

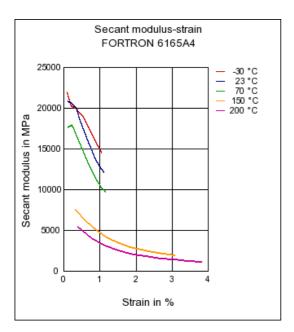

Electrical properties	Value	Unit	Test Standard		
Electric strength	25	kV/mm	IEC 60243-1		
Comparative tracking index CTI	175	-	IEC 60112		
Test specimen production	Value	Unit	Test Standard		
Injection molding melt temperature	310 - 340	°C	ISO 294		
Injection molding mold temperature	135 - 160	°C	ISO 294		
Rheological Calculation properties	Value	Unit	Test Standard		

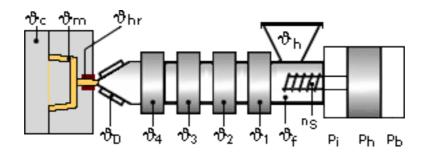

Specific heat capacity of melt

Dynamic Shear modulus-temperature


1600

J/(kg K)


Internal



Secant modulus-strain

Typical injection moulding processing conditions

Pre Drying:

Necessary low maximum residual moisture content: 0.02%

FORTRON should in principle be predried. Because of the necessary low maximum residual moisture content the use of dry air dryers is recommended. The dew point should be =< - 30° C. The time between drying and processing should be as short as possible.

For subsequent storage the material should be stored dry in the dryer until processed (<= 60 h).

Drying time: 3 - 4 h

Drying temperature: 130 - 140 °C

Temperature:										
	[∜] Manifold	^ϑ Mold	[∿] Melt	[∜] Nozzle	[∜] Zone4	^ϑ Zone3	^ϑ Zone2	[∜] Zone1	^ϑ Feed	[ூ] Hopper
min (°C)	330	140	330	310	330	330	310	290	60	20
max (°C)	340	160	340	330	340	340	320	300	80	30
Pressure:										
	Inj press			Hold p	oress		Back	<pressure< pre=""></pressure<>	;	
min (bar)	500		300				0			
max (bar)	1000			70	0		30			
Speed:										
Injection speed: fast										
Screw speed										
Screw diameter (mm)	16		25		40		55		75	
Screw speed (RPM)	-		120		75		50		-	

Injection Molding

On injection molding machines with 15-25 D long three-section screws, as are usual in the trade, the FORTRON is processable. A shut-off nozzle is preferred to a free-flow nozzle.

Melt temperature 320-340 degC Mold wall temperature at least 140 degC

A medium injection rate is normally preferred. All mold cavities must be effectively vented.

Contact Information

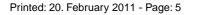
Americas

Ticona North American Headquarters Product Information Service 8040 Dixie Highway Florence, KY 41042 USA Tel.: +1-800-833-4882 Tel.: +1-859-372-3244 email: prodinfo@ticona.com Ticona on the web: www.ticona.com

Customer Service Tel.: +1-800-526-4960 Tel.: +1-859-372-3214 Fax: +1-859-372-3125 Europe

Ticona GmbH Information Service Tel.: +49 (0) 180-5842662 (Germany) +49 (0) 69-30516299 (Europe) Fax: +49 (0) 180-2021202 (Germany & Europe) email: infoservice@ticona.de Internet: www.ticona.com

General Disclaimer


NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colorants or other additives may cause significant variations in data values.

Properties of molded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the

To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication.

Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards. We strongly recommend that users seek and adhere to the manufacturer's current instructions for handling each material they use, and entrust the handling of such material to adequately trained personnel only. Please call the telephone numbers listed (+49 (0) 69 30516299 for Europe and +1 859-372-3244 for the Americas) for additional technical information. Call Customer Services for the appropriate Materials Safety Data Sheets (MSDS) before attempting to process our products. The products mentioned herein are not intended for use in medical or dental implants.

© Copyright 2007, Ticona, all rights reserved. (Pub. 31-January-2011)

